Name: Key

1.

A spring in a toy car is compressed a distance, x. When released, the spring returns to its original length, transferring its energy to the car. Consequently, the car having mass m moves with speed v.

Derive the spring constant, k, of the car's spring in terms of m, x, and v. [Assume an ideal mechanical system with no loss of energy.]

C.
$$k = \frac{mv}{x}$$

D.
$$k = \frac{1}{2}mv^2$$

2.

What is the maximum amount of work that a 6000-watt motor can do in 10. seconds?

A.
$$6.0 \times 10^1 \text{ J}$$

B.
$$6.0 \times 10^2 \text{ J}$$

C.
$$6.0 \times 10^3 \text{ J}$$

$$(D) 6.0 \times 10^4 \text{ J}$$

3.

Base your answer to this question on the information below.

A 65-kilogram pole vaulter wishes to vault to a height of 5.5 meters.

Figure 1

Calculate the *minimum* amount of kinetic energy the vaulter needs to reach this height if air friction is neglected and all the vaulting

energy is derived from kinetic energy.

(A)
$$KE = 3.5 \times 10^3 \text{ J}$$

B. $KE = 3.0 \times 10^3 \text{ J}$

B.
$$KE = 3.0 \times 10^3 \text{ J}$$

C.
$$KE = 2.5 \times 10^3 \text{ J}$$

D.
$$KE = 4.0 \times 10^3 \text{ J}$$

PE=mgh =65(10)(5.5) =35755

4.

An unstretched spring has a length of 10. centimeters. When the spring is stretched by a force of 16 newtons, its length is increased to 18 centimeters. What is the spring constant of this spring?

0.89 N/cm

D. 1.8 N/cm

5.

What is the average power required to raise a 1.81×10^4 -newton elevator 12.0 meters in 22.5 seconds?

A.
$$8.04 \times 10^2 \text{ W}$$

(B)
$$9.65 \times 10^3 \text{ W}$$

C.
$$2.17 \times 10^5 \text{ W}$$

D.
$$4.89 \times 10^6 \text{ W}$$

P= Fx = (1.81×104)(12) ZZ-5 P = 96 53 Welt

6.

The diagram below shows a toy cart possessing 16 joules of kinetic energy traveling on a frictionless, horizontal surface toward a horizontal spring.

Frictionless, horizontal surface

If the cart comes to rest after compressing the spring a distance of 1.0 meter, what is the spring constant of the spring?

C. 8.0 N/m

D. 4.0 N/m

.

7.

A child does 0.20 joule of work to compress the spring in a pop-up toy. If the mass of the toy is 0.010 kilogram, what is the maximum vertical height that the toy can reach after the spring is released?

A 20. m B 2.0 m C. 0.20 m D. 0.020 m $\begin{array}{ccc}
\omega \rightarrow \rho E \rightarrow \rho E \\
\rho E = .ZJ \\
\rho E = mgh \\
.Z = (.01)(10) h \\
h = Zm
\end{array}$

Energy Practice 6

1. A 200 kg roller coaster cart starts from rest at the top of the 1st hill. Assume all surfaces are frictionless.

- Draw a free-body diagram of the cart at the top of the loop.
- b. Write an F_{net} equation for the cart at the top of the loop. Find the minimum velocity for the cart to stay in contact with the track at the top of the loop.
- c. Find the height of the first hill.
- d. Find the velocity of the cart at the bottom of the loop.
- e. Find the normal force on the cart at the bottom of the loop.
- f. The cart is brought to the top of the first hill by a chain lift, which does 70,000 J of work. How much energy was "lost" by the chain lift? What happened to the energy?

b) Fret= ma
c)
$$\frac{1^{\frac{1}{2}} \text{HuL}}{\text{FE=mgh=2000Lid(2c)}}$$
 $\frac{1^{\frac{1}{2}} \text{HuL}}{\text{FE=mgh=2000Lid(2c)}}$
 $\frac{1^{\frac{1}{2}} \text{HuL}}{\text{FW}}$
 $\frac{1^{\frac{1}{2}} \text{FW}}{\text{FW}}$
 $\frac{1^{\frac{1}{2}}$

- 2. An engine lifts a toy rocket from the ground to a height of 30 meters and a speed of 30 m/s in 2 seconds.
 - a. How much work was done by the engine?
 - b. What is the power of the engine?
 - What will be the height of the rocket at its highest point?
 - d. How fast will the rocket be moving when it returns to the ground?

6) P= W/ = 1500 = 750 water

B | RE=ngh= 2(10) (30)=600T | RE=0 | KE=1/2 w S= 1/2(2) (30)=900 S | KE=1/2 w S= 1/2(2) (30)=900 S | W- DE=1/500 T | W- DE=1/500 T

C) At Aighed Point

PE=?

KE=0

Etot=1/20

PE=ngh

1500=(2)(16) h

1=75m

a

KE = 1/2 m 12 1500=1/2(2)12 1 N= 38.7 1/5